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1 Introduction

The proximity effect in condensed matter physics is a mechanism by which a material be-

comes weakly superconducting when placed in the proximity of a conventional (“strong”)

superconductor. Given the parallel between superconductivity and the electroweak sym-

metry breaking, one may wonder if a similar mechanism is at work also in the latter case.

A natural framework for exploring this possibility is anisotropic states of higher-

dimensional lattice gauge theories. Perhaps the best known of these is the layer phase [1–6],

in which the gauge field is localized in d-dimensional layers, so that the charges within each

layer interact according to the Coulomb law. The requirement that the Coulomb phase be

present is the reason why for d = 4 the genuine layer phase can exist only in Abelian gauge

theories [1].

For our purposes, however, the Coulomb law is unnecessary and, indeed, detrimental.

We are interested in the situation when the layers are confining, but the confinement

(correlation) length within the layers is much larger than in the direction perpendicular to

them. We do not require such states to form a separate phase; in fact, we expect them to

be a corner of the usual confining phase of the higher-dimensional theory.

We refer to such a state as a layered state or a layered region, as opposed to a layer

phase. In section 2, we argue that for the SU(3) gauge group in d+ 1 = 5 dimensions it is

separated from the weakly-coupled phase by a first-order phase transition.

Additional possibilities appear when the fifth dimension is appreciably curved, as in the

case, for example, of a brane bounding space with a negative cosmological constant [7].1 For

SU(3), the resulting variation of the gauge coupling produces a weakly-coupled “normal”

region near the brane and a layered region further away, with a well defined phase boundary

between them. Because the length of the “normal” region (indeed, in our case, of the

entire fifth dimension) is finite, we expect that at large 4-dimensional distances the 5-

dimensional theory there reduces to its 4-dimensional counterpart. So, in this limit, both

1 The layer phase of the U(1) gauge theory on such a background was studied in ref. [5].
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the “normal” and layered regions are confining, but with different confinement scales: in

the “normal”region, the confinement scale is the usual ΛQCD, while in the layers it is a

much larger Λ. We suggest that the quark condensates of the layered SU(3) color are the

origin of the masses of the W and Z bosons.

The argument of section 2 is based on the mean-field theory [8], which had been a

reliable guide to the phase structure of anisotropic 5-dimensional Abelian theories [1–6].

At the mean-field level, the “normal” phase is ordered, with respect to the link variable

connecting individual 4-dimensional hyperplanes. In the non-Abelian case (with a finite

fifth dimension), we expect that this order is destroyed by confinement, and in this sense

the mean field is formally in error. However, if the mean-field phase transition is strongly

first-order, and the confinement length is large, we do not expect the transition to disappear

altogether. This is the rationale on which we proceed here.

Instead of a full 5-dimensional lattice, one could use deconstruction [9, 10] — the ap-

proach where one latticizes only the additional, fifth dimension or, in other words, considers

multiple instances of the 4-dimensional theory connected to one another by sigma-model

variables. These sigma-model variables correspond to the link variables Uα̃ of the lattice

gauge theory (α̃ labels the links). The simplest version of the proximity effect is realized

when there is a first-order phase transition in the sigma model. If, as in the present case, Uα̃

are elementary SU(3) fields living on the sites of a 4-dimensional lattice, there is evidence

for such a transition already at the mean-field level [11]. We expect very similar physics

in the case when the nonlinear sigma model is replaced with a linear one (i.e., U †
α̃Uα̃ is

allowed to fluctuate), as in one version of deconstruction [9, 10]. In another version [9],

Uα̃ are composites of new confining gauge theories. To explain quark masses, we require

that there are quark hopping terms, of the form q̄αUα̃qα+1. The presence of such terms

suggests that, if Uα̃ are “mesons” of a new confining theory, the quarks must be “baryons,”

meaning that they are also composite. This is a fascinating possibility, but also one more

challenging to explore than the fully latticized theory considered here.

Our proposal can also be compared to Higgsless models [12, 13], where the electroweak

symmetry is broken by boundary conditions in the extra dimension. Unlike the boundary

conditions, the layered-state quark condensates deform the profiles of W and Z relatively

little, provided the fifth dimension is sufficiently short. (These profiles are discussed further

in section 3.) As a result, no new gauge symmetries are required to avoid a large tree-level

contribution to the ratio of the W and Z masses (the ρ parameter).

Overall, we find that the layered-state color functions much like the conventional tech-

nicolor [14–16], with the following differences.

(i) The confinement scale Λ of the layer theories does not have to be of order v ∼
250 GeV: because more than one layer can contribute to the W mass, it can be much

smaller than that. The masses of various new particles produced by the strongly

coupled sector are then much smaller than the conventional 1TeV. TeV-scale masses

of new particles are a major reason why the conventional technicolor runs into con-

flict with the measured value of the S parameter [17]. A lower confinement scale

may improve prospects for obtaining an acceptable value (although we have not yet

ascertained whether it actually does so).

– 2 –
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(ii) Quarks acquire masses by scattering off the layered region (a process similar to An-

dreev reflection [18] in a superconductor-normal-superconductor junction). So, the

problem of quark masses, which is quite formidable in the conventional technicolor,

has a natural solution here.

(iii) The quark scattering off the layers can break flavor symmetries. This may help to

lift the masses of pseudo-Goldstone bosons produced by chiral symmetry breaking in

the layers to an acceptable level.

2 Layered states in five-dimensional gauge theories

Consider a background of the Randall-Sundrum type [7], with the line element

ds2 = dz2 + a2(z)ηµνdx
µdxν ≡ gMNdx

MdxN . (2.1)

Greek indices run from 0 to 3, and ηµν = diag(−1, 1, 1, 1) is the Minkowski metric tensor.

Similarly to ref. [7], we consider an orbifolded z direction, z ∈ S1/Z2, with two branes at

the orbifold’s fixed points: one, near which we live, at z = 0, where the warp factor a(z)

is maximal, and the other at z = πR. We do not, however, take R to infinity, so the fifth

dimension remains compact. A gauge field Aµ is assumed even under the orbifold group

Z2, A5 odd; the orbifold projection of fermions will be defined in section 4.

The naive continuum action of a 5-dimensional gauge theory is

Scont = − 1

4g2
5

∫
d4xdz

√−ggµν
(
gρσGa

µρG
a
νσ + 2gzzGa

µzG
a
νz

)
, (2.2)

where Ga
µρ and Ga

µz are the field strengths. The two terms in eq. (2.2) contain different

metric functions, which leads to an anisotropy of the gauge coupling.

There is a degree of arbitrariness in choosing the lattice discretization of eq. (2.2).

The choice matters: at large z, where the theory is in the layered state, the 4-dimensional

hyperplanes decouple from each other, so we are dealing with a collection of individual

4-dimensional gauge theories. The inverse coupling constants of these theories are

1

g2
4

=
∆z

g2
5

, (2.3)

where ∆z is the lattice spacing in the z direction.2 Here we discretize the imaginary-time

version of eq. (2.2) in such a way that both ∆z and ∆x, the spacing in the xµ directions,

are independent of z. In this case, g4 and the confinement scale Λ of the 4-dimensional

theories are also z-independent. We assume that Λ ≪ 1/∆x, so that the layer theories are

in the continuum limit. Then, at one loop,

Λ =
1

∆x
exp

{
− b

g2
5

∆z

}
, (2.4)

where b is the coefficient of the one-loop beta-function.

2 We may need to adjust ∆z in eq. (2.3) into some effective quantity to take into account the residual

correlations between neighboring hyperplanes. We retain the notation ∆z for such a quantity.

– 3 –
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z+z−

πR
z

Figure 1. Arrangement of 4-dimensional hyperplanes along the z direction. The dashed lines are

hyperplanes obtained upon “unfolding” the orbifold, a convenience in the discussion of fermions

in section 4. The phase boundaries are at z±. The shaded region is “normal”; the rest of the

hyperplanes are in the layered state.

In contrast to g4, the usual coupling constant of QCD, gQCD, is determined by the

“normal” region near the brane (see figure 1):

1

g2
QCD

=
zeff
g2
5

, (2.5)

where zeff is the effective length of that region (it may be different from the geometrical

length due to effects at the phase boundary). If zeff is sufficiently large in comparison with

∆z, the confinement scale (2.4) is much larger than ΛQCD. So, when quarks are added, the

chiral symmetry breaking in the layers will be correspondingly stronger. This is the basis

of the proximity-effect scenario.

The imaginary-time lattice action corresponding to eq. (2.2) is

S = −
∑

α,p

βαχ(Uα,p) −
∑

α̃,p̃

β′α̃χ(Uα̃,p̃) . (2.6)

The integer α labels different (4-dimensional) hyperplanes perpendicular to the z axis,

α̃ labels the interval between α and α + 1, p are plaquettes within a hyperplane, p̃ are

plaquettes connecting the hyperplanes; χ(U) = TrU for SU(n) (where the trace is taken in

the fundamental representation), and χ(U) = ReU for U(1).

To simplify notation, we first write down the mean-field equations for the Abelian

group U(1). These are similar to the equations obtained in ref. [8] for the isotropic Abelian

theory. Once the physics responsible for formation of the layer phase becomes apparent,

we switch back to the non-Abelian case.

We seek to minimize the mean-field energy, whose 4-dimensional density (the potential)

in the Abelian case is

Emf = −
∑

α

{
4[u(Φα) − Φαu

′(Φα)] + 6βα[u′(Φα)]4
}

−
∑

α̃

{
u(Φα̃) − Φα̃u

′(Φα̃) + 4β′α̃φα · φα+1u
′(Φα)u′(Φα+1)[u

′(Φα̃)]2
}
. (2.7)

– 4 –
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Here Φα and Φα̃ are the mean fields conjugate, respectively, to the link variables Uαµ and

Uα̃ and represented as two-dimensional vectors, φα is the unit vector in the direction of

Φα, a dot (·) denotes the dot product of such vectors, and u(Φ) = ln I0(Φ), where I0 is the

modified Bessel function. The numerical coefficients in eq. (2.7) reflect the number of links

(four) and plaquettes (six) per site of a 4-dimensional hyperplane.

Suppose that in the region of interest βα is large, in comparison with both β′α̃ and

unity. Then, we can first minimize the in-plane potential — the first term in eq. (2.7) —

and use the obtained value of Φα in the second, interplane, term. We find that the in-plane

field is large, Φα ≫ 1, so that

〈Uαµ〉 = u′(Φα) ≈ 1 . (2.8)

The interplane potential becomes

E ′
mf = −

∑

α̃

{
u(Φα̃) − Φα̃u

′(Φα̃) + 4β′α̃φα · φα+1[u
′(Φα̃)]2

}
. (2.9)

This is essentially the mean-field potential of the 4-dimensional O(2) nonlinear sigma model.

We expect this theory to have a second-order phase transition at some critical value β′α̃ =

β′cr. Indeed, at small Φα̃,

E ′
mf ≈

∑

α̃

{
1

4
Φ2

α̃ − 3

64
Φ4

α̃ − β′α̃φα · φα+1

(
Φ2

α̃ − 1

4
Φ4

α̃

)}
, (2.10)

which shows that, at the mean-field level, there is a second-order transition at β′α̃ = 1/4.

In the case of a spatially-varying β′α̃, the critical value will be reached at some α̃ = α̃+.

The corresponding value of z is z = z+. Propagation of charges in the region 0 ≤ z ≤ z+
is 5-dimensional, as shown by the nonzero expectation value

〈Uα̃〉 = u′(Φα̃) 6= 0 . (2.11)

On the other hand, outside this region,

〈Uα̃〉 = 0 . (2.12)

This is the layer phase of the Abelian theory [1, 2]. We interpret eq. (2.12) as the absence

of coherent propagation of charges across many layers. It is in this sense that individual

layers “decouple”: a short-distance correlation (e.g., between nearest neighbors) remains.

Monte Carlo studies confirm the presence of a second-order phase transition for the

U(1) gauge group [4, 6]. The mean-field theory predicts a second-order transition also for

SU(2), but not for SU(3), the case of main interest to us. In the case of SU(3), the mean field

Φ is a 3×3 matrix, and this allows for a trilinear term, proportional to detΦ, in the potential.

This term drives the sigma-model transition first-order already at the mean-field level [11].

For non-Abelian fields, the would-be layer phase acquires a mass gap via confinement.

On the other hand, by choosing βα to be large enough, we can make the confinement length

Λ of the layers as large as we please. This means that, while for non-Abelian groups there

is no genuine layer phase in five dimensions, there can be a layered state with a large but

finite confinement length [1].

– 5 –
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Outside the mean-field theory, the nonzero expectation values (2.8) and (2.11) cannot

survive without gauge fixing [19]. We therefore should be looking at a gauge-invariant

correlator of the sigma-model variables, namely,

Gα̃(x) = 〈Tr[Uα̃(x) . . . U †
α̃(0) . . .]〉 , (2.13)

where the trace is in the fundamental representation of SU(3), and the dots stand for link

variables (in the xµ directions) taken along the shortest path connecting x to the origin.

Thus, the correlator is a Wilson loop stretched in the xµ directions. The corresponding

correlation length λα̃ can be defined by
∫
d4xGα̃(x) = λ4

α̃ . (2.14)

In the “normal” region, λα̃ is large — we expect it to go to infinity in the limit when

ΛQCD goes to zero. On the other hand, in the layers, λα̃ is at most a few times ∆x (unless

the sigma-model phase transition is very weakly first-order). This disparity means that

the boundary between the weakly-coupled phase and the layers remains sharp even for a

compact fifth dimension, despite the absence of a genuine order parameter.

Now let us add quarks to the theory. Eq. (2.12) shows that, in the layered state,

these will preferentially propagate along the layers and therefore behave as ordinary 4-

dimensional quarks. As a result, each layer has a copy of chiral symmetry that acts

on quarks and is spontaneously broken by the quark condensates. The pattern of chiral

symmetry breaking can then be described in the same way as in QCD, namely, with the help

of Nf ×Nf unitary matrices Uα (one per layer), governed by a chiral effective Lagrangian,3

(4)Lchiral = −f2
∑

α

ηµνTr(DµU†
αDνUα) . (2.15)

Here f ∼ Λ, and the covariant derivative includes the electroweak gauge fields. The sum

extends over all hyperplanes that are in the layered state. In our scenario, this chiral

Lagrangian is responsible for the masses of the W and Z bosons.

3 Masses of W and Z

The covariant derivative in eq. (2.15) is

DµUα =

(
∂µ + iAa

µ

τa

2

)
Uα − iUαBµ

τ3

2
, (3.1)

where Aa
µ and Bµ are respectively the SU(2)W and U(1)Y gauge fields, and τa are the

Pauli matrices.

In the absence of quark condensates, the lowest-energy mode of a gauge field is a

constant and has zero mass. This follows directly from the mode equation at zero 3-

momentum. In a suitable gauge, it reads

− ∂z(a
2∂zA) = E2A , (3.2)

3 In general, we denote by (4)
L a Lagrangian density referring to the 4-dimensional coordinate volume

(so that the corresponding action is
R

(4)
Ld

4
x).

– 6 –
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where A is any of Aa
µ and Bµ, and E is the energy (mass) of the mode.

If the mass term produced by the condensates is sufficiently small (the condition for

this will be discussed below), the leading corrections to the eigenvalues E2 can be found

by first-order perturbation theory. For the lowest mode, this means computing the La-

grangian (2.15) on constant fields. Setting U = 1 and the gauge fields to constants turns

eq. (2.15) into

(4)Lchiral = −1

2
f2ngNlayer

[
(A1

µ)2 + (A2
µ)2 + (A3

µ −Bµ)2
]
, (3.3)

where ng is the number of quark doublets, Nlayer is the number of hyperplanes in the layered

region, and (Aµ)2 ≡ ηµνAµAν . This is the same as the mass Lagrangian in the minimal

standard model, provided we identify the symmetry-breaking scale v ∼ 250 GeV as

v2 = 4f2ngNlayer . (3.4)

We see that, for a large Nlayer, the parameter f and, hence, the confinement scale Λ are

much smaller than v.

To obtain the condition of applicability of eq. (3.3), consider how much the lowest

mode is deformed by the condensates. The mode equation now reads

− ∂z(a
2∂zA) +M2(z)A = E2A , (3.5)

where M(z) is a constant, M0, at z+ < z ≤ πR and zero otherwise. Details of the solution

depend on the form of the warp factor. We will describe results for

a(z) = e−κ|z| , (3.6)

which represents a region of the anti-de Sitter (AdS) space bounded by the branes [7]. In

this case, expanding eq. (3.5) in small M0 and E, we obtain, to the leading nontrivial order,

A(y) = 1 − 1

2
E2y2

(
ln

y

y0
− 1

2

)
, y0 < y < y+ , (3.7)

A(y) = C

{
1 +

1

2
(M2

0 − E2)y2

(
ln

y

yR
− 1

2

)}
, y+ < y < yR , (3.8)

where y = κ−1eκz (so that z = 0 maps to y0 = κ−1, z = z+ to y = y+, and z = πR to

y = yR) and C is a constant. Matching eqs. (3.7) and (3.8) at y = y+, we find

E2 = M2
0

(
1 − z+

πR

)
, (3.9)

which is the same as E2 obtained by using eq. (3.3). This value of E is identified with

the mass of W or Z, depending on which value of M0 is used in eq. (3.5). The requisite

condition of applicability is that the variation of A(y), caused by the corrections in eqs. (3.7)

and (3.8), is small compared to unity. For example, if z+ ∼ πR, the condition becomes

mW ≪ κe−πκR.

– 7 –
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4 Fermions

Propagation of quarks is 5-dimensional in the “normal” region 0 ≤ z ≤ z+ but, as we

have seen in section 2, becomes 4-dimensional in the layered state. Because of the twisted

boundary conditions (discussed below), it is convenient to consider first propagation of

quarks with the “normal” region unfolded into z− ≤ z ≤ z+ (see figure 1) and impose the

Z2 symmetry later. Thus, we begin with the 5-dimensional Dirac equation supplemented

by boundary conditions at z = z±. These boundary conditions encode the way in which

the quarks are reflected from the layered region.

For computation of the quark masses, it is sufficient to consider solutions that are inde-

pendent of the spatial coordinates xi. Then, the fermions can be assumed two-component,

and the γ-matrices two-dimensional. We use the representation in which γ0 = σ1 and

γz = −iσ2, where σa are the Pauli matrices.

Let us first neglect the penetration of “normal” quarks into the layered region. Then,

the space for them ends at α = α±, and the lattice Lagrangian of a single free quark is

(4)LF =

α+∑

α=α
−

iwαψ
†
α∂tψα + βF

α+−1∑

α=α
−

(iψ†
ασ

3ψα+1 + H.c.) , (4.1)

with some weights wα > 0 and βF ≡ 1/2∆z. (We will discuss shortly how this is related

to the continuum Lagrangian.) For ψα depending on time as e−iEt, the discrete Dirac

equation following from eq. (4.1) reads

− iβFσ
3(ψα+1 − ψα−1) = Ewαψα (4.2)

at the interior points, and

− iβFσ
3ψα

−
+1 = Ewα

−

ψα
−

, (4.3)

iβFσ
3ψα+−1 = Ewα+ψα+ (4.4)

at the ends.

Five-dimensional fermions hop between the 4-dimensional hyperplanes in such a way

that, if a fermion is left-handed (in the 4-dimensional sense) at site α, it will be right-handed

at α+1, and vice versa. As a consequence, existence of purely chiral (left- or right-handed)

modes depends on whether the total number of sites in the “normal” region is even or odd.

Here we consider the case when it is odd, and such modes exist (the logic being that we

are looking for a discretization that produces phenomenologically viable spectra).

In this case, both α+ and α− can be made even (by relabeling the sites if necessary),

and the system (4.2)–(4.4) has a E = 0 solution: ψα = ψ0 (a constant nonzero spinor) at

even α, and ψα = 0 at odd. Decomposing ψ0 into left- and right-handed components, we

obtain two purely chiral solutions — one left- and one right-handed.

Now, let us take into account the mixing of the left- and right-handed species due to

quark condensation in the layered region.4 The effect is most easily computed directly in the

4 The way it was interpreted in section 2, the condition (2.12) means that there is no coherent propagation

of quarks across many layers. The interlayer correlation length, however, while short, is finite, so the

“normal” quarks extend somewhat into the layered region.

– 8 –
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continuum limit. Consider two continuum 5-dimensional fermions Ψ1 and Ψ2, Combining

them into a single column, called Ψ, we can write the kinetic term in the action as

SF = i

∫
d4xdz

√−gΨ̄γAe N
A (∂N + ΓN )Ψ , (4.5)

where e N
A are basis vectors, and ΓN is the spin connection (A,N = 0, . . . , 4). For the

metric (2.1), the nontrivial entries are

e ν
α =

1

a
δν
α , (4.6)

Γν = −1

2
a′ηναγ

αγz (4.7)

(α, ν = 0, . . . , 3). The Dirac equation then reads

− iγ0

[
γi∂i + aγz

(
∂z +

2a′

a

)]
Ψ = EΨ . (4.8)

Thus, the effect of the spin connection can be absorbed by redefinition of the field into

ψ = Ψa2. In the continuum problem, it is convenient to make a further change of variables

— from z to

η =

∫ z

0

dz′

a(z′)
. (4.9)

These redefinitions bring eq. (4.8) to the usual flat-space form.

As in the lattice version, we concentrate on solutions that are independent of xi. Then,

ψ1 and ψ2 can each be assumed two-component, and eq. (4.8) becomes

− iσ3∂ηψ = Eψ . (4.10)

Here ψ = (ψ1, ψ2)
T has the total of four components, and σ3 acts individually on ψ1 and

ψ2. For each of those, eq. (4.10) is a continuum version of eq. (4.2) with wα = 1/a(zα).

To reproduce the chiral spectrum obtained on the lattice, we choose the boundary

conditions at η = η± in such a way that, in the absence of any mixing between the species,

one of ψ1,2 would have a purely left-handed and the other a purely right-handed zero-energy

mode. This is conveniently achieved by extending the range of η to the entire infinite line

and adding a mass term that produces chiral modes in the region η− ≤ η ≤ η+:5

LM = −M(η)(ψ̄1ψ1 − ψ̄2ψ2) , (4.11)

where

M(η) =





M−, η < η−,

0, η− < η < η+,

M+, η < η+,

(4.12)

and M− and M+ are of opposite signs. This mechanism of producing chiral fermions is

similar to the domain-wall mechanism of ref. [20], but instead of localizing fermions on a

5Of course, only discrete eigenstates of this extended problem are relevant.

– 9 –



J
H
E
P
0
3
(
2
0
0
9
)
1
1
8

domain wall [21] it confines them to the entire “normal” region. Condensation of quarks

in the layered region is represented by the off-diagonal term

Lm = −µ(η)ψ̄1ψ2 − µ∗(η)ψ̄2ψ1 , (4.13)

where µ(η) has the same form as eq. (4.12) but with asymptotic values µ− and µ+. The

total mass Lagrangian density is LM + Lm.

We wish to stress that adding these mass terms is merely a convenient way to describe

scattering of quarks off the layered region. Indeed, all the mass parameters appearing in

eqs. (4.11) and (4.13) can in the end be taken to infinity; all that matters is their ratios.

The mass matrix of ψ1 and ψ2 (we will refer to these components as “doublers”) can

be diagonalized at η > η+ by a unitary transformation involving only the generators τ1

and τ2 of the doubler SU(2):6

(
M+ µ+

µ∗+ −M+

)
= eiθ

j
+τ j

(
M̃+ 0

0 −M̃+

)
e−iθj

+τ j

, (4.14)

where j = 1, 2 and M̃2
+ = M2

+ + |µ+|2. A similar transformation with parameters θj
−

diagonalizes the mass matrix at η < η−. In general, there is no reason why the parameters

of these two transformations should be the same: the mass matrices in the two regions

can be misaligned. Such a misalignment is analogous to a difference in the phase of the

superconducting order parameter on two sides of a Josephson junction. By this analogy,

we expect it to lead to persistent vacuum currents in the z direction, 〈Jz〉 6= 0, where

Jz = ψ̄γzTψ , (4.15)

and T is τ1 or τ2.

It is possible to define the orbifold projection of fermions so as to preserve nonzero

expectation values of these currents. Indeed, define the projection as invariance under

ψ(η) → Zψ(−η), where

Z = iτ3γz (4.16)

(with τ3 acting in the doubler space). The current (4.15) is even under this transforma-

tion provided7

ZTZ = −T , (4.17)

which holds for both of the τ matrices in question.

The mass term LM is even under the orbifold transformation when M+ = −M−, while

Lm is even when µ+ = µ− (no minus sign here!). Under these conditions, any nonzero µ+

leads to a misalignment of the mass matrices. Let us show that such a misalignment gives

rise to a nonzero quark mass. When more quark flavors are added, misalignments in the

flavor space will similarly break flavor symmetries.

6We use a different notation to distinguish these from the σ
a matrices that act on the spinor index.

7 This is apparently the same as the consistency condition for a twist in the Scherk-Schwarz mecha-

nism [22, 23] of symmetry breaking (see, for example, ref. [24]).
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In the layered region, the relevant wavefunctions are purely evanescent:

ψ(η < η−) =




c1




E − iẼ−

M−

0

µ∗−


+ c2




0

µ−
E − iẼ−

−M−







e

eE
−

(η−η
−

), (4.18)

ψ(η > η+) =




c3




E + iẼ+

M+

0

µ∗+


+ c4




0

µ+

E + iẼ+

−M+







e−

eE+(η−η+), (4.19)

where Ẽ± = [M̃2
± − E2]1/2, and ci are constants. Matching these evanescent solutions to

the solution of eq. (4.10) for the interior region, we obtain the ratios of the constants and

an equation for the eigenvalues:

2M̃−M̃+ cos[2EL+ δ(E)] = 2M+M− + µ∗−µ+ + µ∗+µ− , (4.20)

where δ(E) is a phase, defined as follows:

E − iẼ−

E + iẼ+

=
M̃−

M̃+

eiδ(E) , (4.21)

and

L = η+ − η− =

∫ z+

z
−

dz

a(z)
. (4.22)

(Recall that M+ and M− are of opposite signs.)

In the orbifolded case, M+ = −M− ≡ M and µ+ = µ− ≡ µ. When |µ|, 1/L ≪ |M |,
there are light states, for which |E| ≪ M̃±, i.e., δ ≈ −π. Setting δ = −π leads to the

following spectrum:

En = E0 +
π

L
n , (4.23)

where E0 ≪ 1/L, and n ≥ 0 is an integer. We identify E0 with the mass of a standard-

model quark.

A sufficiently small L will render the modes with n ≥ 1 unobservable. For example,

for the AdS case (3.6),

L =
2

κ
(eκz+ − 1) . (4.24)

The condition that E1 is much larger than the weak scale mW becomes κe−κz+ ≫ mW .

5 Conclusion

In this paper, we explored the possibility that, by suitably discretizing a warped fifth

dimension, one obtains a bulk region in which quantum chromodynamics is in a layered

state, and the proximity effect due to the presence of such a region reproduces the physics

of the standard model. In our scenario, the layered state is characterized by technicolor-like
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confining dynamics, but instead of technicolor we have the usual color, which is stronger

in the layers than in the “normal” world.

Both the vector bosons and the quarks acquire masses by scattering off the layered

region. The “normal” quarks couple appreciably only to the outermost of the layers, but

the W and Z to all of them. As a result, the confinement scale of the layer theories can be

much lower than the conventional v ∼ 250 GeV, with potentially interesting phenomeno-

logical consequences.

The mechanism described here produces masses for the quarks but not for the leptons.

Can masses of the leptons be produced in a similar way? One possibility is that electro-

magnetism becomes strongly-coupled in the bulk and forms a layer phase of its own (a

genuine one, as the theory is Abelian). In the layer phase, hopping of individual electrons

between the layers is inhibited, but an electron-positron pair, being neutral, can hop freely.

As a result, there is an effective short-distance attraction between opposite charges, which

may be strong enough to cause condensation in the ēLeR channel. Such condensates would

give masses to all the charged leptons while leaving the neutrinos massless.
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